第1講 The Sign of Gauss Curvature

- L1_A 1. Review: Some Setting in the Last Semester
 - 2. Example: The Surface Given by z=h(x,y) with K(p)>0
- **L1_B** 1. Example: The Surface Given by z=h(x,y) with K(p)<0
 - 2. Example: The Surface Given by z=h(x,y) with K(p)=0
- L1_C 1. Example: Torus and Monkey Saddle

第2講 Geometric Interpretation of Gauss Curvature

- **L2_A** 1. Orientation Preserving and Orientation Reversing Map
 - 2. Proposition: The Gauss Map is Orientation Preserving at Elliptic Point and Orientation Reversing at Hyperbolic Point
- **L2_B** 1. Proposition: Geometric Interpretation of Gauss Curvature
- L2_C 1. Proposition: Geometric Interpretation of Gauss Curvature (cont.)2. Examples: Sphere and Trough-Shaped Surface

第3講 Local Convex and Curvature

- L3_A 1. Review: Geometric Interpretation of Gauss Curvature
 - 2. Remark: Similar Result for Curvature of Plane Curve
 - 3. Tangent Indicatrix
 - 4. Locally Convex and Strictly Locally Convex
- L3_B 1. Note: Relations between Curvature and Locally Convex
- L3_C 1. Note: A Critical Point of a Distance Function on a Surface

第4講 The Rigidity of the Sphere

- L4_A 1. Theorem: A Compact Surface Has an Elliptic Point
- L4_B 1. Theorem: A Compact Connected Surface with Constant Gauss Curvature Is a Sphere
 - 2. Lemma: Three Conditions of a Point to Be an Umbilical Point
 - 3. Proof: A Compact Connected Surface with Constant Gauss Curvature Is a Sphere
- L4_C 1. Proof: A Compact Connected Surface with Constant Gauss Curvature Is a Sphere (cont.)
 - 2. Proof: Three Conditions of a Point to Be an Umbilical Point

第5講 The Rigidity of the Sphere (cont.)

- **L5_A** 1. Proof: Three Conditions of a Point to Be an Umbilical Point (cont.)
- **L5_B** 1. Proof: Three Conditions of a Point to Be an Umbilical Point (cont.)
- **L5_C** 1. Proof: Three Conditions of a Point to Be an Umbilical Point (cont.)

第6講 Vector Field

- L6_A 1. Vector Field
 - 2. Trajectory of a Vector Field
 - 3. Examples: w=(x,y) and w=(y,-x)

- **L6_B** 1. Theorem: Existence and Uniqueness of the Trajectory of a Vector Field
 - 2. Theorem: Existence of the Local Flow a Vector Field
- L6_C 1. Ruled Surface, Ruling and Directrix
 - 2. Examples: Plane, Cylinder, Cone and Hyperboloid of Revolution

第7講 Ruled Surface

- L7_A 1. Line of Striction
- **L7_B** 1. Condition of a Ruled Surface Given by the Line of Striction as Directrix being a Regular Surface
 - 2. Gauss Curvature of a Ruled Surface Given by the Line of Striction as Directrix
- L7_C 1. Developable Surface
 - 2. Developable Surface Has Gauss Curvature Zero at Regular Points

第8講 Developable Surface

- **L8_A** 1. Two Subclasses of Developable surface
- **L8_B** 1. Two Subclasses of Developable surface (cont.)
 - 2. Example: The Envelope of the Family of Tangent Planes Along a Curve of a Surface
- **L8_C** 1. The Envelope of the Family of Tangent Planes Along a Curve of a Surface Is Developable

第9講 Minimal Surface

- L9_A 1. Review: Developable Surface
 - 2. Minimal Surface
 - 3. Normal Variation
 - 4. Interpretation of Minimality
- **L9_B** 1. Interpretation of Minimality (cont.)
- **L9_C** 1. Interpretation of Minimality (cont.)
 - 2. Proposition: A Parametrized Surface Is Minimal if and only if A'(0)=0

第10講 Minimal Surface (cont.)

- **L10_A** 1. Proof: A Parametrized Surface Is Minimal if and only if A'(0)=0
 - 2. Isothermal Parametrized Surface
 - 3. Theorem: If x Is an Isothermal Parametrized Surface Then x_uu+x_vv=2(a^2)HN
- **L10_B** 1. Theorem: If x Is an Isothermal Parametrized Surface Then x uu+x vv=2(a^2)HN (cont.)
 - 2. Harmonic Function
 - 3. Corollary: An Isothermal Parametrized Surface Is Minimal if and only if Its Coordinate Functions Are Harmonic
 - 4. Introduction: Development of Minimal Surface

- L10_C 1. Examples: Catenoid and Helicoid
 - 2. Proposition: Any Minimal Surface of Revolution Is an Open Subset of a Plane or a Catenoid
 - 3. Proposition: Any Ruled Minimal Surface Is an Open Subset of a Plane or a Helicoid
 - 4. Theorem: There Is No Compact Minimal Surface

第11講 The Intrinsic Geometry of Surfaces: Isometries and Conformal

- L11_A 1. Parametrizations for Catenoid and Helicoid
 - 2. Isometry and Local Isometry
 - 3. Example: Local Isometric; The Cylinder and Plane in R^2
- **L11_B** 1. Example: Local Isometric; The Cylinder and Plane in R^2 (cont.)
 - 2. Example: Every Helicoid Is Locally Isometric to Catenoid
 - 3. Proposition: Two Regular Surfaces Have the Same First Fundamental Form in Domain U if and only if They Are Locally Isometric
- **L11_C** 1. Proposition: Two Regular Surfaces Have the Same First Fundamental Form in Domain U if and only if They Are Locally Isometric (cont.)
 - 2. Conformal

第12講 The Intrinsic Geometry of Surfaces: Isometries and Conformal (cont.)

- L12_A 1. Review: Isometry and Conformal
 - 2. Note: A Conformal Map Preserves the Angle between Two Tangent Vectors
 - 3. Proposition: A Parametrization Is Conformal if and only if It is Isothermal
 - 4. Theorem: Any Two Regular Surfaces Are Locally Conformal
- **L12_B** 1. Proposition: A Criterion for Local Conformal
 - 2. Stereographic Projection
- **L12_C** 1. Stereographic Projection (cont.)

第13講 The Intrinsic Geometry of Surfaces: Gauss Remarkable Theorem

- **L13_A** 1. Christoffel Symbols
- L13_B 1. Christoffel Symbols (cont.)
 - 2. Christoffel Symbols in Terms of the First Fundamental Form
- **L13_C** 1. All Geometric Concepts and Properties Expressed in Terms of the Christoffel Symbols Are Invariant under Isometry
 - 2. Codazzi-Mainardi Equations

第14講 The Intrinsic Geometry of Surfaces: Gauss Remarkable Theorem (cont.)

- L14_A 1. Codazzi-Mainardi Equations and Gauss Formula
- **L14_B** 1. Codazzi-Mainardi Equations and Gauss Formula (cont.)
- L14_C 1. Codazzi-Mainardi Equations and Gauss Formula (cont.)2. Gauss's Theorema Egregium

第15講 The Intrinsic Geometry of Surfaces: Gauss Remarkable Theorem (cont.)

- **L15_A** 1. Codazzi-Mainardi Equations and Gauss Formula (cont.)
- **L15_B** 1. Gauss Curvature in Terms of the First Fundamental Form
 - 2. Example: Surface of Revolution
 - 3. Proof: Gauss's Theorema Egregium
 - 4. Example: Catenoid and Helicoid
- 第16講 The Intrinsic Geometry of Surfaces: Fundamental Theorem of Surface
- L16_A 1. Review: Gauss's Theorema Egregium
 - 2. Counterexample: The Converse of Gauss's Theorema Egregium Is Not True
- **L16_B** 1. Counterexample: The Converse of Gauss's Theorema Egregium Is Not True (cont.)
 - 2. Theorem: Fundamental Theorem of Surface (Bonnet)
- **L16_C** 1. Example: Is There a Regular Surface with the Given Differentiable Functions E, F, G, e, f, g

第17講 Parallel Transport and Geodesics

- **L17_A** 1. Example: Is There a Regular Surface with the Given Differentiable Functions E, F, G, e, f, g (cont.)
 - 2. Covariant Derivative
- L17_B 1. General Formula of the Covariant Derivative
 - 2. Example: Covariant Derivate of a Vector Field on a Plane
 - 3. Parallel Vector Field
 - 4. Proposition: There Exists a Unique Parallel Vector Field along a Curve with Given Initial Value
- L17_C 1. Proposition: The Inner Product of Two Parallel Vector Fields Is Constant
 - 2. Example: The Tangent Vector Field of a Meridian Is a Parallel Vector Field on a Sphere

第18講 Parallel Transport and Geodesics (cont.)

- L18_A 1. Parallel Transport
- L18_B 1. Parameterized Geodesic and Geodesic
 - 2. Algebraic Value and Geodesic Curvature
- **L18_C** 1. Geometric Interpretation of Geodesic Curvature

2. Example: Geodesic Curvature of a Circle on a Unit Sphere

第19講 Algebra Value of the Covariant Derivative

- **L19_A** 1. Example: The Normal Curvature and the Geodesic Curvature of the Circle on the Elliptic Parabolic
 - 2. Lemma: The Differentiable Extension of a Determination
- **L19_B** 1. Lemma: Relation between the Covariant Derivative of Two Unit Vector Fields and the Variation of the Angle That They Form
 - 2. Note: The Geodesic Curvature Is the Rate of Change of the Angle That the Tangent to the Curve Makes with a Parallel Vector Field
 - 3. Proposition: An Expression for the Algebraic Value in Terms of the First Fundamental Form and the Variation of the Angle
- **L19_C** 1. Proposition: An Expression for the Algebraic Value in Terms of the First Fundamental Form and the Variation of the Angle (cont.)

第 20 講 Algebra Value of the Covariant Derivative (cont.)

- L20_A 1. Proposition: Liouville's Formula
- L20_B 1. Proposition: Liouville's Formula (cont.)
 - 2. Geodesic Equations
- **L20_C** 1. Geometric Interpretation of Geodesic

第21講 Geodesic Equations

- L21_A 1. Example: Geodesics of a Cylinder
 - 2. Example: Geodesics of a Surface of Revolution
- **L21_B** 1. Example: Geodesics of a Surface of Revolution (cont.)
- L21_C 1. Example: Geodesics of a Sphere
 - 2. Geodesic Parametrization and Geodesic Coordinates

第 22 講 Surfaces of constant Gaussian curvature

- **L22_A** 1. Review: Geodesic Parametrization and Geodesic Coordinates
 - Theorem: Any Point of a Surface of Constant Gauss Curvature Is Contained in a Coordinates Neighborhood That Is Isometric to an Open Set of a Plane, a Sphere or a Pseudo-Sphere
- L22_B 1. Theorem: Any Point of a Surface of Constant Gauss Curvature Is Contained in a Coordinates Neighborhood That Is Isometric to an Open Set of a Plane, a Sphere or a Pseudo-Sphere (cont.)
 - 2. Simple Closed Piecewise Regular Parametrized Curve
- L22_C 1. Closed Vertices and Regular Arcs
 - 2. Differentiable Functions That Measure the Positive Angle from x_u to the Tangent of a Simple Closed Curve
- 第 23 講 Gauss-Bonnet Theorem for Simple Closed Curves and Curvilinear Polygons

- **L23_A** 1. Proposition: Theorem of Turning Tangents
 - 2. The Integral of a Differentiable Function over a Bounded Region on an Oriented Surface
 - 3. Theorem: Local Version of Gauss-Bonnet Theorem
- **L23_B** 1. Theorem: Local Version of Gauss-Bonnet Theorem (cont.)
- **L23_C** 1. Theorem: Local Version of Gauss-Bonnet Theorem (cont.)
 - 2. Theorem: Global Gauss-Bonnet Theorem

第 24 講 Gauss-Bonnet Theorem

- **L24_A** 1. Triangulation
 - 2. Euler Characteristic Number
 - 3. Proposition: Every Regular Region of a Regular Surface Admits a Triangulation
- L24_B 1. Proof: Global Gauss-Bonnet Theorem
- **L24_C** 1. Proof: Global Gauss-Bonnet Theorem (cont.)

第 25 講 Gauss-Bonnet Theorem (cont.)

- L25_A 1. Theorem: Gauss-Bonnet Theorem for Orientable Compact Surface
 - 2. Example: Sphere with Radius r
 - 3. Example: Convex Surface in R^3
 - 4. Example: Polar Cap
- L25_B 1. Example: Polar Cap (cont.)
 - 2. Euler Characteristic Number and Genus
 - 3. Theorem: Diffeomorphic Surfaces Have the Same Euler Characteristic Number and Two Compact Oriented Surfaces with the Same Euler Characteristic Number Are Diffeomorphic
- **L25_C** 1. Theorem: A compact Oriented Surface with Positive Gauss Curvature Is Diffeomorphic to a Standard Sphere
 - 2. Four Color Map Theorem

第 26 講 Clairaut's Theorem

- L26_A 1. Proposition: A Regular Compact Connected Oriented Surface Which Is Not Homeomorphic to a Sphere Has Some Points Such That the Gauss Curvature Is Positive, Negative and Zero
 - 2. Proposition: Clairaut's Theorem
- **L26_B** 1. Proposition: Clairaut's Theorem (cont.)
- L26_C 1. Surface of Revolution and Hyperbolic Models

第 27 講 Hyperbolic Models

- L27_A 1. Hyperbolic Models: Pseudo-Sphere, Upper Half-Plane and Poincare Disc
- L27_B 1. Geodesics of Upper Half-plane By Clairaut's Theorem
- **L27_C** 1. Geodesics of Upper Half-plane By Geodesic Equations

第 28 講 Mobius Transformation and Non-Euclidean Geometry

- **L28_A** 1. Mobius Transformation
 - 2. Mobius Transformation from Upper Half-plane to Upper Half-Plane Is an Isometry
- **L28_B** 1. Mobius Transformation from Upper Half-plane to Upper Half-Plane Is an Isometry (cont.)
 - 2. Five Postulates for Euclidean Geometry
- **L28_C** 1. The Parallel Postulate and Non-Euclidean Geometry